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Abstract It is shown that every pseudo-effect algebra can be organized as a total algebra.
In general, this total algebra is not unique, but it always determines the original partial
addition. Special attention is paid to lattice-ordered pseudo-effect algebras for which the
total operations can be defined in a unique natural way and this allows one to characterize
pairs of compatible elements.
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Introduction

Effect algebras introduced by Foulis and Bennett in 1994, as well as their equivalent coun-
terpart D-posets independently introduced by Kôpka and Chovanec also in 1994, are com-
monly known quantum structures. In 2001, Dvurečenskij and Vetterlein [4, 5] established
the so-called pseudo-effect algebras as a non-commutative generalization of effect algebras.
Roughly speaking, a pseudo-effect algebra is a partial algebra (E,+,0,1) where + is a
partial binary operation on E satisfying certain axioms which are similar to those of effect
algebras and guarantee that (E,+,0,1) is an effect algebra provided that + is commutative.
(For the exact definition see Sect. 2.)

The present paper is a continuation of [2] where we have proved that for every effect al-
gebra (E,+,0,1) there exists a total algebra (E,⊕,¬,0,1) of type (2,1,0,0) such that the
restriction of ⊕ to the pairs (x, y) with x ≤ ¬y is just +. Thus given a pseudo-effect algebra
(E,+,0,1) we construct a total algebra from which the original partial operation + can be
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recovered. We start with structures that we call posets with sectional antiautomorphisms. It
is shown in Sect. 1 that it is always possible to define total operations that determine the
underlying order as well as the sectional antiautomorphisms. In Sect. 2 we first characterize
pseudo-effect algebras within posets with sectional antiautomorphisms and then apply the
results of Sect. 1 in order to make an arbitrary pseudo-effect algebra into a total algebra.
Finally, in Sect. 3 we focus on compatibility in lattice-ordered pseudo-effect algebras.

1 Posets with Sectional Antiautomorphisms

Throughout, by an antiautomorphism on a poset we mean a bijection β with the property
that x ≤ y iff β(x) ≥ β(y) for all x, y.

Definition 1 A poset with sectional antiautomorphisms is a structure (P,≤, (γp, δp)p∈P ,

0,1) where (P,≤) is a poset with least element 0 and greatest element 1 and, for each
p ∈ P , γp and δp are antiautomorphisms on the section [p,1] = {x ∈ P : p ≤ x} such that
the inverse of γp is δp . If (P,≤) is a lattice, then we call (P,≤, (γp, δp)p∈P ,0,1) a lattice
with sectional antiautomorphisms.

Let (P,≤, (γp, δp)p∈P ,0,1) be a poset with sectional antiautomorphisms. Assuming for
the moment that (P,≤) is a lattice with the associated join operation ∨, we may define two
total binary operations, which we denote by → and �, as follows:

x → y := γy(x ∨ y) and x � y := δy(x ∨ y). (1)

It can easily be seen that these ‘arrows’ capture all we need to know about the initial lattice
with sectional antiautomorphisms:

(a) x ∨ y = (x → y) � y = (x � y) → y,
(b) x ≤ y iff x → y = 1 iff x � y = 1,
(c) for every a and x ∈ [a,1], γa(x) = x → a and δa(x) = x � a.

We have defined x → y and x � y respectively as γy(u) and δy(u) where u = x ∨ y, but
in order for (1) to be correct it is not necessary that u is the supremum of {x, y}; it suffices to
require that u is some upper bound of {x, y}. Thus our idea is to equip P with a ‘join-like’
operation � so that we could introduce the ‘arrows’ by setting

x → y := γy(x � y) and x � y := δy(x � y). (2)

Since (P,≤) is a bounded poset, every two-element subset of P has an upper bound and we
are allowed to define � as follows:

x � y = y � x :=
{

x ∨ y if x ∨ y = sup{x, y} exists,

some upper bound of {x, y} otherwise.
(3)

The groupoid (P,�) thus obtained is a commutative directoid in the sense of Ježek and
Quackenbush [7]. Let us recall that a commutative directoid is a commutative, idempotent
groupoid (D, ·) satisfying the identity x · ((x · y) · z) = (x · y) · z. As in semilattices the
stipulation x ≤ y iff x · y = y [resp. x ≤ y iff x · y = x] defines a partial order on D such
that for every x, y ∈ D, x · y is an upper [resp. lower] bound of {x, y}. Conversely, every
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upwards [resp. downwards] directed poset could be made into a commutative directoid by
letting x · y = y · x be the greater [resp. smaller] of x, y provided that x, y are comparable,
and some common upper [resp. lower] bound otherwise.

Observe that in general x · y need not be the supremum [resp. infimum] of {x, y} even
though it exists, but in (3) we insist on x � y being sup{x, y} whenever it exists.

Example 1 Let (P,≤, (γp, δp)p∈P ,0,1) be the poset

with the following sectional antiautomorphisms:

γ0 : a 	→ b 	→ c 	→ d 	→ a and δ0 : a 	→ d 	→ c 	→ b 	→ a in [0,1],
γa = δa : b 	→ b, d 	→ d in [a,1],
γc = δc : b 	→ d 	→ b in [c,1].

Of course, in each section [p,1] these maps switch p and 1, and the sections [b,1] and
[d,1] admit trivial antiautomorphisms only. As sup{a, c} does not exist, a � c may be equal
to b, d or 1. We then have:

→ 0 a b c d 1
0 1 1 1 1 1 1
a b 1 1 x 1 1
b c b 1 d d 1
c d y 1 1 1 1
d a d b b 1 1
1 0 a b c d 1

� 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 x 1 1
b a b 1 d d 1
c b y 1 1 1 1
d c d b b 1 1
1 0 a b c d 1

where

x =

⎧⎪⎨
⎪⎩

d if a � c = b,

b if a � c = d,

c if a � c = 1,

y =

⎧⎪⎨
⎪⎩

b if a � c = b,

d if a � c = d,

a if a � c = 1.

This example shows that there are possibly many different ways of defining the opera-
tions →,�, depending on �. However, it is worth observing that →,� give essentially the
same information about the original structure as the arrows in case of lattices:

(a) x � y = (x → y) � y = (x � y) → y,
(b) x ≤ y (i.e., x � y = y) iff x → y = 1 iff x � y = 1,
(c) γa(x) = x → a and δa(x) = x � a for x ∈ [a,1].

Proposition 1 Let P = (P,≤, (γp, δp)p∈P ,0,1) be a poset with sectional antiautomor-
phisms equipped with the operation � defined according to (3). Then the algebra P A =
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(P,→,�, 0,1) with →,� given by (2) satisfies the identities

1 → x = x = 1 � x, (4)

x � y = y � x = (y � x) → x = (x � y) → y, (5)

x → ((x � y) � z) = 1, (6)

(((x � y) � z) → x) → (y → x) = 1, (7)

(((x � y) � z) � x) � (y � x) = 1, (8)

0 → x = 1, (9)

where the supplementary term operation � is defined by

x � y := (x → y) � y. (10)

Proof Straightforward; it suffices to note that x�y = x�y and apply the above observations
(a), (b) and (c). �

Remark 1 Let P and P A be as in Proposition 1. If (P,≤) is a lattice, then x � y = x � y =
sup{x, y} for all x, y ∈ P , and P A also satisfies the identities

((y � z) → x) → (y → x) = 1, (11)

((y � z) � x) � (y � x) = 1, (12)

which in general do not hold true in algebras derived from posets with sectional antiauto-
morphisms. For instance, if we put a � c = b in Example 1, then c � d = c � d = d and
((c � d) → a) → (c → a) = d → b = b 
= 1.

Proposition 2 Let A = (A,→,�,0,1) be an algebra of type (2,2,0,0) satisfying (4)–(9)
and let � be the term operation defined by (10). Then (A,�) is a commutative directoid
whose underlying order is given by x ≤ y iff x → y = 1 iff x � y = 1, and for each a ∈ A,
the maps γa, δa : [a,1] → [a,1] defined by γa(x) = x → a and δa(x) = x � a are mutually
inverse antiautomorphisms on the section [a,1]. Thus AP = (A,≤, (γa, δa)a∈A,0,1) is a
poset with sectional antiautomorphisms. Moreover, we have γy(x � y) = x → y and δy(x �
y) = x � y for all x, y ∈ A.

Proof We first observe that (x � 1) � 1 = (1 � x) � 1 = 1 → ((1 � x) � 1) = 1 by (5), (4)
and (6). Hence, using (7) and (8), we have 1 = (((x � 1) � 1) → x) → (1 → x) = (1 →
x) → (1 → x) = x → x and 1 = (((x � 1) � 1) � x) � (1 � x) = (1 � x) � (1 � x) =
x � x. It follows that x � x = (x → x) � x = 1 � x = x. Trivially, � is commutative, and
by (6) and (4) we have x � ((x � y) � z) = (x → ((x � y) � z)) � ((x � y) � z) = 1 �
((x � y) � z) = (x � y) � z. Hence (A,�) is a commutative directoid. Its top element is 1
since x � 1 = 1 � x = (1 → x) � x = x � x = 1 for all x ∈ A, and the bottom element is 0
since 0 � x = (0 → x) � x = 1 � x = x for all x ∈ A.

Further, the underlying order ≤ of (A,�) is given by

x ≤ y ⇔ x → y = 1 ⇔ x � y = 1.

Indeed, if x ≤ y, i.e., x � y = y, then (y � x) � y = y and (7) yields 1 = (((y � x) � y) →
y) → (x → y) = (y → y) → (x → y) = 1 → (x → y) = x → y; and conversely, if x →
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y = 1, then x � y = (x → y) � y = 1 � y = y, so x ≤ y. The equivalence x ≤ y ⇔ x �
y = 1 can be verified in a similar way.

It is now obvious that (7) and (8) can be rewritten in the following form:

x ≤ y ≤ z ⇒ z → x ≤ y → x and z � x ≤ y � x. (13)

Clearly, (13) entails that for every a ∈ A both γa : x 	→ x → a and δa : x 	→ x � a are
well-defined antitone maps from [a,1] = {x ∈ A : a ≤ x} into itself. Moreover, for each x ∈
[a,1], γa(δa(x)) = (x � a) → a = x � a = x and δa(γa(x)) = (x → a) � a = x � a = x.
Thus γa, δa are antiautomorphisms which are inverses of one another.

Finally, γy(x � y) = (x � y) → y = ((x → y) � y) → y = (x → y) � y = x → y and
likewise δy(x � y) = (x � y) � y = ((x � y) → y) � y = (x � y) � y = x � y. �

Remark 2 If A satisfies the identities (11) and (12), then AP is a lattice with sectional
antiautomorphisms and a � b is the supremum of {a, b}. Indeed, (11) and (12) capture the
following strengthening of (13):

y ≤ z ⇒ z → x ≤ y → x and z � x ≤ y � x,

a double application of which entails that whenever u is an upper bound of {a, b}, then
a � b = (a → b) � b ≤ (u → b) � b = u � b = u, proving a � b = sup{a, b}.

Remark 3 In the light of Proposition 2 we may think of algebras of type (2,2,0,0) sat-
isfying the equations (4)–(9) as posets with sectional antiautomorphisms. More precisely,
if we are given an algebra A, then AP is a poset with sectional antiautomorphisms from
which A could be retrieved by means of the operation � defined by (10). Thus if we use
� in constructing APA := (AP )A from AP by Proposition 1, then APA = A. However, the
correspondence between the class of algebras satisfying (4)–(9) and the class of posets with
sectional antiautomorphisms given by the assignments A 	→ AP and P 	→ P A is not one-
one. The reason is that in defining the arrows →,� we first have to fix the join-like opera-
tion �, which is not uniquely determined by the underlying order of AP unless it is a lattice,
and hence � can differ from �, in which case APA 
= A. Therefore, one poset with sectional
antiautomorphisms in general gives arise to several distinct algebras satisfying (4)–(9) (see
Example 1).

On the other hand, an easy inspection shows that for every poset with sectional antiauto-
morphisms P we have P AP := (P A)P = P .

In what follows, in addition to the ‘arrows’ →,� we will alternatively work with the
operations ⊕,�,− ,∼ defined by

x− := x → 0 = γ0(x), x∼ := x � 0 = δ0(x),

x ⊕ y := x∼ → y = γy(x
∼ � y), x � y := y− � x = δx(x � y−).

(14)

We should notice that x → y = x− ⊕ y and x � y = y � x∼.

2 Pseudo-Effect Algebras

Definition 2 [4] A pseudo-effect algebra is a structure (E,+,0,1), where + is a partial
binary operation on E, satisfying the following conditions:
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(PE1) + is associative, in the sense that (a + b) + c is defined if and only if a + (b + c) is
defined, and in this case (a + b) + c = a + (b + c);

(PE2) for every a ∈ E there exist unique a−, a∼ ∈ E such that a− + a = 1 = a + a∼;
(PE3) if a + b is defined, then a + b = x + a = b + y for some x, y ∈ E;
(PE4) if a + 1 or 1 + a is defined, then a = 0.

Every pseudo-effect algebra (E,+,0,1) becomes a bounded poset when equipped with
≤ which is given by

a ≤ b iff b = x + a for some x ∈ E iff b = a + y for some y ∈ E.

These equivalences determine two partial subtractions \ and / on E: b\a is defined and
equals x iff b = x + a, and a/b is defined and equals y iff b = a + y. Thus both b\a and
a/b are defined iff a ≤ b, and then (b\a) + a = b = a + (a/b). It is also clear that for each
a ∈ E we have 1\a = a− and a/1 = a∼.

If the underlying poset (E,≤) happens to be is a lattice, then (E,+,0,1) is called a
lattice pseudo-effect algebra.

Let us recall some basic properties of pseudo-effect algebras (see [4], Lemmata 1.4 and
1.6) that we will use in calculations:

a−∼ = a = a∼−; 1− = 0 = 1∼; a + 0 = a = 0 + a;
a + b = c iff a∼ = b + c∼ iff b− = c− + a; (15)

a + b is defined iff a ≤ b− iff a∼ ≥ b;
a ≤ b iff a− ≥ b− iff a∼ ≥ b∼; (16)

If a ≤ b, then b\a = (a + b∼)− and a/b = (b− + a)∼;
If b + c is defined, then a ≤ b iff a + c is defined and a + c ≤ b + c; (17)

If c + b is defined, then a ≤ b iff c + a is defined and c + a ≤ c + b. (18)

We first characterize pseudo-effect algebras as certain posets with sectional antiautomor-
phisms.

Lemma 1 The following conditions are equivalent in posets with sectional antiautomor-
phisms:

x ≤ y ≤ z ⇒ δγx(z)(γx(y)) = γy(z), (19)

x ≤ y ≤ z ⇒ γδx(z)(δx(y)) = δy(z), (20)

x ≤ y & γx(y) ≤ z ⇒ δγx(y)(z) = γδx(z)(y), (21)

x ≤ z & δx(z) ≤ y ⇒ δγx(y)(z) = γδx(z)(y). (21′)

Proof (19) ⇒ (20) If x ≤ y ≤ z, then x ≤ δx(z) ≤ δx(y), which yields γδx(z)(δx(y)) =
δγx(δx (y))(γx(δx(z))) = δy(z).

(20) ⇒ (21) Let x ≤ y and γx(y) ≤ z. Then x ≤ γx(y) ≤ z implies δγx(y)(z) =
γδx(z)(δx(γx(y))) = γδx(z)(y).

(21) ⇔ (21′) Actually, the condition (21′) is merely a reformulation of (21) because the
assumption that x ≤ y and γx(y) ≤ z is the same as x ≤ z and δx(z) ≤ y. Indeed, if x ≤ y
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and γx(y) ≤ z, then x ≤ z and δx(z) ≤ δx(γx(y)) = y, and conversely, if x ≤ z and δx(z) ≤ y,
then x ≤ y and γx(y) ≤ γx(δx(z)) = z.

(21′) ⇒ (19) Let x ≤ y ≤ z. Then x ≤ γx(y) and δx(γx(y)) = y ≤ z together entail
δγx(z)(γx(y)) = γδx(γx (y))(z) = γy(z). �

Proposition 3 Let E = (E,+,0,1) be a pseudo-effect algebra. For every e ∈ E the maps
γe, δe : [e,1] → [e,1] defined by γe(x) = x− + e and δe(x) = e+x∼ are antiautomorphisms
which are inverses of one another. Thus E P = (E,≤, (γe, δe)e∈E,0,1), where ≤ is the un-
derlying order of E , is a poset with sectional antiautomorphisms which in addition satisfies
the conditions (19)–(21).

Proof It is obvious that γe, δe : [e,1] → [e,1] are well-defined because for any x ∈ [e,1],
x−+e and e+x∼ exist and are greater or equal to e. Both γe and δe are antitone: If e ≤ x ≤ y,
then γe(x) = x− + e ≥ y− + e = γe(y) and δe(x) = e + x∼ ≥ e + y∼ = δe(y) by (16),
(17) and (18). Moreover, by (15) we have δe(γe(x)) = e + (x− + e)∼ = x and γe(δe(x)) =
(e+x∼)− +e = x. Hence γe, δe are mutually inverse antiautomorphisms on [e,1]. Finally, if
x ≤ y and γx(y) = y− + x ≤ z, then δγx(y)(z) = (y− + x)+ z∼ = y− + (x + z∼) = γδx(z)(y),
which is just (21). �

Proposition 4 Let P = (P,≤, (γp, δp)p∈P ,0,1) be a poset with sectional antiautomor-
phisms satisfying the equivalent conditions (19)–(21), and let us define the partial addition
+ on P as follows:

x + y is defined iff δ0(x) ≥ y, and in this case x + y := γy(δ0(x)).

Then P E = (P,+,0,1) is a pseudo-effect algebra whose underlying order is just the initial
order ≤, and where x− = γ0(x) and x∼ = δ0(x).

Proof First of all we observe that x + y is defined iff δ0(x) ≥ y iff x ≤ γ0(y), and

x + y := γy(δ0(x)) = δx(γ0(y)).

Indeed, δ0(x) ≥ y is clearly equivalent to x ≤ γ0(y), and 0 ≤ y ≤ δ0(x) implies γy(δ0(x)) =
δγ0(δ0(x))(γ0(y)) = δx(γ0(y)) by (19).

(PE1) Let (x+y)+z be defined, i.e., δ0(x) ≥ y and x+y ≤ γ0(z). Since y ≤ γy(δ0(x)) =
x + y ≤ γ0(z), also y + z exists and we have y + z = δy(γ0(z)) ≤ δy(γy(δ0(x))) = δ0(x),
so x + (y + z) is defined, too. Conversely, assume x + (y + z) exists, i.e., y ≤ γ0(z) and
δ0(x) ≥ y + z. Then y ≤ δy(γ0(z)) = y + z ≤ δ0(x) entails the existence of x + y and we
have x + y = γy(δ0(x)) ≤ γy(δy(γ0(z))) = γ0(z), hence (x + y) + z is defined.

Thus (x + y) + z exists iff so does x + (y + z), in which case, using

δy(x + y) = δy(γy(δ0(x))) = δ0(x),

from y ≤ γy(δ0(x)) = x + y ≤ γ0(z) we obtain

(x + y) + z = δx+y(γ0(z)) = γδy(γ0(z))(δy(x + y)) = γy+z(δ0(x)) = x + (y + z)

by (20). This settles (PE1).
(PE2) It is plain that γ0(x)+x is defined and γ0(x)+x = δγ0(x)(γ0(x)) = 1. On the other

hand, if y + x exists and equals 1, then y ≤ γ0(x) and 1 = y + x = δy(γ0(x)), which is
possible only if γ0(x) = y. Hence x− = γ0(x). Analogously, x∼ = δ0(x).
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(PE3) Let x + y be defined. With u := γ0(δx(x + y)) and v := δ0(γy(x + y)) we have
u + x = x + y = y + v. Indeed, u + x = γx(δ0(u)) = γx(δx(x + y)) = x + y and y + v =
δy(γ0(v)) = δy(γy(x + y)) = x + y.

(PE4) If x + 1 or 1 + x is defined, then x ≤ γ0(1) = 0 or 0 = δ0(1) ≥ x, so that x = 0.
There remains to show that the initial partial order ≤ on P is the underlying order of

the pseudo-effect algebra P E , i.e., a ≤ b iff b = a + x for some x ∈ P . But this is almost
evident because if a ≤ b, then a + δ0(γa(b)) exists for a ≤ γa(b) = γ0(δ0(γa(b))), and a +
δ0(γa(b)) = δa(γ0(δ0(γa(b)))) = δa(γa(b)) = b, and conversely, if b = a + x = δa(γ0(x)),
then trivially b ≥ a. �

Theorem 1 The correspondence between pseudo-effect algebras and posets with sectional
antiautomorphisms satisfying (19)–(21) as established in Propositions 3 and 4 is one-one.

Proof (1) Let E = (E,+,0,1) be a pseudo-effect algebra, E P = (E,≤, (γe, δe)e∈E,0,1) the
poset with sectional antiautomorphisms from Proposition 3 and E PE = (E, �,0,1) the effect
algebra associated to E P by Proposition 4. We know that ≤ is the underlying order of E as
well as of E PE . Moreover, a � b is defined iff a ≤ γ0(b) = b− iff a + b is defined, and in this
case a � b = γb(δ0(a)) = a∼− + b = a + b. Hence E PE = E .

(2) Given P = (P,≤, (γp, δp)p∈P ,0,1) a poset with sectional antiautomorphisms satis-
fying (19)–(21), let P E = (P,+,0,1) be the pseudo-effect algebra constructed by Proposi-
tion 4, and P EP = (P,�, (εp, ηp)p∈P ,0,1) be the poset with sectional antiautomorphisms
associated to P E according to Proposition 3. It follows from Proposition 4 that � and ≤
coincide. Also, for every p ∈ P and x ∈ [p,1] we have εp(x) = x− + p = γp(δ0(γ0(x))) =
γp(x) and ηp(x) = p + x∼ = δp(γ0(δ0(x))) = δp(x). Thus P EP = P . �

Now let E = (E,+,0,1) be a pseudo-effect algebra. We may associate a total algebra
to E by making the corresponding poset with sectional antiautomorphisms E P = (E,≤,

(γe, δe)e∈E,0,1) into the algebra E PA = (E,→,�,0,1) in accordance with Proposition 1.
Thus we first equip E with the operation � which obeys the rule (3), and then define the
total operations → and � as follows:

x → y := γy(x � y) = (x � y)− + y, x � y := δy(x � y) = y + (x � y)∼. (22)

We shall briefly write E A in place of E PA.

Theorem 2 Let E = (E,+,0,1) be a pseudo-effect algebra and let the operations →,�
be defined by (22). Then the algebra E A = (E,→,�,0,1) satisfies the identities (4)–(9)
and the quasi-identities

x ≤ y ≤ z ⇒ (y → x) � (z → x) = z → y, (23)

x ≤ y ≤ z ⇒ (y � x) → (z � x) = z � y, (24)

x ≤ y & y → x ≤ z ⇒ z � (y → x) = y → (z � x). (25)

Proof It is clear that E A satisfies (4)–(9) by Proposition 1, and the quasi-identities (23)–(25)
are precisely the conditions (19)–(21) expressed by means of →,�. �

The total operations � and ⊕ from (14) are given by

x � y := y− � x = x + (x � y−)∼, x ⊕ y := x∼ → y = (x∼ � y)− + y.
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Obviously, we have x � y = x ⊕ (x � y−)∼ and x ⊕ y = (x∼ � y)− � y, and if x + y exists
in E , then both x � y and x ⊕ y are equal to x + y. It is also easily seen that (25) [resp. the
condition (21)] is equivalent to the quasi-identity

x ≤ y− & x ⊕ y ≤ z− ⇒ (x ⊕ y) � z = x ⊕ (y � z),

which is further equivalent to the quasi-identity

x ≤ y− & x ⊕ y ≤ z− ⇒ (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z).

By combining Propositions 2, 3 and 4 we obtain:

Theorem 3 Given A = (A,→,�,0,1) an algebra satisfying (4)–(9), let us define the par-
tial addition + as follows:
x + y is defined and equal to x ⊕ y = x∼ → y (= y− � x = x � y) iff x∼ ≥ y (iff x ≤ y−).
Then AE = (A,+,0,1) is a pseudo-effect algebra if and only if A satisfies the equivalent
conditions (23)–(25).

We have E AE = E , but the assignments A 	→ AE and E 	→ E A do not establish a one-
one correspondence because the passage from E to E A strongly depends on how the ‘join-
like’ operation � has been defined, so that it can well happen that AEA differs from A (see
Remark 3).

3 Compatibility in Lattice Pseudo-Effect Algebras

Compatibility of elements plays an important role in (lattice) effect algebras. Among others,
Riečanová [8] proved that every lattice effect algebra is a union of its blocks (= maximal
subsets of mutually compatible elements) and that these blocks are MV-algebras.

Dvurečenskij and Vetterlein [3, 6] defined several kinds of compatibilities in pseudo-
effect algebras:

Definition 3 [3, 6] Let (E,+,0,1) be a pseudo-effect algebra. Then a, b ∈ E are

(i) strongly compatible (in symbols a
c←→ b) if there exist a1, b1, c ∈ E such that a =

a1 + c, b = b1 + c, a1 + b1 + c = b1 + a1 + c and a1 ∧ b1 = 0;
(ii) compatible (in symbols a ↔ b) if there exist a1, b1, c ∈ E such that a = a1 + c, b =

b1 + c and a1 + b1 + c = b1 + a1 + c;
(iii) weakly compatible (in symbols a

w←→ b) if there exist a1, b1, c ∈ E such that a =
a1 + c, b = b1 + c and both a1 + b1 + c and b1 + a1 + c are defined;

(iv) ultra weakly compatible (in symbols a
uw←→ b) if there exist a1, b1, c ∈ E such that

a = a1 + c, b = b1 + c, and a1 + b1 + c or b1 + a1 + c is defined.

By [6], Theorem 3.8, if (E,+,0,1) is a lattice pseudo-effect algebra, then a
c←→ b iff

a ↔ b iff a
w←→ b for all a, b ∈ E. Obviously, a ↔ b yields a

uw←→ b, but the reverse
implication fails to be true.

Let us recall that two elements a, b in an effect algebra (E,+,0,1) are said to be com-
patible provided that there exist a1, b1, c ∈ E so that a = a1 + c, b = b1 + c and a1 + b1 + c

is defined in E. It is therefore apparent that in case that (E,+,0,1) is an effect algebra the
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above concepts of compatibility, weak compatibility and ultra weak compatibility coincide,
i.e., a ↔ b iff a

w←→ b iff a
uw←→ b.

In [1] we have proved that if (E,+,0,1) is a lattice effect algebra, then

a ↔ b if and only if a ⊕ b = b ⊕ a. (26)

Our final objective is to characterize pairs of compatible elements in pseudo-effect alge-
bras in terms of the total operations we have defined in Sect. 2. We start with ultra weak
compatibility:

Theorem 4 Let (E,+,0,1) be a lattice-ordered pseudo-effect algebra. For all a, b ∈ E the
following are equivalent:

(i) a
uw←→ b;

(ii) a � b = b∼ → a∼ or b � a = a∼ → b∼;
(iii) a → b = b− � a− or b → a = a− � b−;
(iv) b ⊕ a∼ = b � a∼ or a ⊕ b∼ = a � b∼;
(v) a− ⊕ b = a− � b or b− ⊕ a = b− � a.

Proof By [6], Proposition 3.10,

a
uw←→ b iff a\(a ∧ b) = (a ∨ b)\b or b\(a ∧ b) = (a ∨ b)\a,

iff (a ∧ b)/a = b/(a ∨ b) or (a ∧ b)/b = a/(a ∨ b).
(27)

Further, for every a, b ∈ E we have (a ∨ b)\b = (b + (a ∨ b)∼)− = (a � b)− = (b � a∼)−
and a\(a ∧b) = ((a ∧b)+a∼)− = ((a∼ ∨b∼)− +a∼)− = (b∼ → a∼)− = (b⊕a∼)−, hence

a\(a ∧ b) = (a ∨ b)\b iff a � b = b∼ → a∼ iff b � a∼ = b ⊕ a∼, (28)

and similarly, b/(a ∨ b) = ((a ∨ b)− + b)∼ = (a → b)∼ = (a− ⊕ b)∼ and (a ∧ b)/a =
(a− + (a ∧ b))∼ = (a− + (a− ∨ b−)∼)∼ = (b− � a−)∼ = (a− � b)∼, so that

(a ∧ b)/a = b/(a ∨ b) iff a → b = b− � a− iff a− ⊕ b = a− � b. (29)

The equivalence of (i)–(v) now easily follows by combining (27), (28) and (29). �

If we want to describe compatibility, it suffices to replace ‘or’ by ‘and’:

Corollary 1 Let (E,+,0,1) be a lattice-ordered pseudo-effect algebra. For all a, b ∈ E

the following are equivalent:

(i) a ↔ b;
(ii) a � b = b∼ → a∼ and b � a = a∼ → b∼;
(iii) a → b = b− � a− and b → a = a− � b−;
(iv) b ⊕ a∼ = b � a∼ and a ⊕ b∼ = a � b∼;
(v) a− ⊕ b = a− � b and b− ⊕ a = b− � a.

Proof This is a direct consequence of Theorem 4 because

a ↔ b iff a\(a ∧ b) = (a ∨ b)\b and b\(a ∧ b) = (a ∨ b)\a,
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iff (a ∧ b)/a = b/(a ∨ b) and (a ∧ b)/b = a/(a ∨ b)

by [6], Proposition 3.6. �

Theorem 5 Let (E,+,0,1) be a lattice pseudo-effect algebra that satisfies the following
additional condition:

x ↔ y ⇒ x ↔ y− and x ↔ y∼. (30)

Then, for all a, b ∈ E, we have a ↔ b iff a
uw←→ b iff a ⊕ b = a � b iff a∼ → b = b− � a.

Proof By [6], Proposition 4.8, the condition (30) entails that all the aforementioned types
of compatibility coincide, thus a

uw←→ b is the same as a ↔ b. Consequently, if a ↔ b, then
also a ↔ b− and a− ↔ b, which yields a ⊕b = a �b and b ⊕a = b �a by Corollary 1 (iv).
On the other hand, if a ⊕ b = a � b (or b ⊕ a = b � a), then (iv) of Theorem 4 implies
a

uw←→ b−, which is equivalent to a ↔ b−, and hence a ↔ b by (30). �

The last theorem generalizes (26) because the condition (30) automatically holds if
(E,+,0,1) is a lattice effect algebra, and in this case we have a ⊕ b = (a− ∨ b)− + b

and a � b = a + (a ∨ b−)− = (a ∨ b−)− + a = b ⊕ a.
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